The Journal of Arthroplasty, Volume 32, Issue 12, 3757 - 3762

Post-Cam Design and Contact Stress on Tibial Posts in Posterior-Stabilized Total Knee Prostheses: Comparison Between a Rounded and a Squared Design

Watanabe, Toshifumi et al.
Knee

Background

The post-cam mechanism in posterior stabilized (PS) prostheses plays an important role in total knee arthroplasty (TKA). The purpose of this study is to clarify the difference of the contact stress on the tibial post between a rounded post-cam design and a squared design during deep knee flexion and at hyperextension using the three-dimensional (3D) finite element models.

Methods

We created 2 types of 3D, finite element models of PS prostheses (types A and B), whose surfaces were identical except for the post-cam geometries: type A has a rounded post-cam design, while type B has a squared design. Both types have a similar curved-shape intercondylar notch of the femoral component. Stress distributions, peak contact stresses, and contact areas on the tibial posts at 90°, 120°, and 150° flexion with/without 10° tibial internal rotation and at 10° hyperextension were compared between the 2 models.

Results

Type B demonstrated more concentrated stress distribution compared to type A. The peak contact stresses were similar in both groups during neutral flexion; however, the stresses were much higher in type B during flexion with 10° rotation and at hyperextension. The higher peak contact stresses corresponded to the smaller contact areas in the tibial post.

Conclusion

A rounded post-cam design demonstrated less stress concentration during flexion with rotation and at hyperextension compared with a squared design. The results would be useful for development of implant designs and prediction of the contact stress on the tibial post in PS total knee arthroplasty.


Link to article