Clinical Orthopaedics and Related Research: October 2000 - Volume 379 - Issue - p 34-40

Clinical and Hip Simulator Comparisons of Ceramic-on-Polyethylene and Metal-on-Polyethylene Wear

Clarke, Ian C. PhD*; Gustafson, Allen MD**
Hip

The benefit of reduced polyethylene wear with ceramic in hip replacements does not seem to have been universally appreciated. In this current study, wear predictions from laboratory and clinical studies were compared for ceramic-onpolyethylene and cobalt chrome-on-polyethylene combinations. Many laboratory studies included water-based lubrication and linear-tracking mechanisms. Now it is appreciated that these were inappropriate methods, because of a propensity for very low or virtually no polyethylene wear against ceramics in water. Thus, water-based studies predicting a 20-to 80-fold advantage for ceramic-on-polyethylene compared with metal-on-polyethylene clearly were in error. However, serum-based simulator studies with high protein-concentrations generally have shown greater wear with alumina-on-polyethylene than with metal-on-polyethylene. Controversy still remains over the use of such nonphysiologic protein levels. The simulator studies were just beginning to explore the role of serum protein concentrations and the influence on the various wear models. Polyethylene wear with zirconia systems was particularly affected by serum protein concentrations. In one simulator study, use of proteins in the physiologic range resulted in the alumina-on-polyethylene wear rate decreasing to approximately 50% of that of metal-on-polyethylene. In the literature, many hip design and polyethylene variations were reported which confounded the wear analysis. Overall, the clinical data supported the superior performance of ceramic-on-polyethylene systems by a factor of 1.5-to fourfold. However, the amount of supporting data was not large. This summary of laboratory and clinical data indicated that ceramic-on-polyethylene hip replacement systems offered on average a 50% wear reduction from metal-on-polyethylene systems.


Link to article