Circ_0043947 contributes to interleukin 1β-induced injury in chondrocytes by sponging miR-671-5p to up-regulate RTN3 expression in osteoarthritis pathology
He, M., Jia, Z., Wen, Y. et al.Ankle Elbow Hip Knee Shoulder Wrist
Objective
Osteoarthritis (OA) is a chronic joint disease featured by articular cartilage degeneration and damage. Accumulating evidence have demonstrated the pivotal regulatory roles of circular RNAs in OA pathology. However, the role of circ_0043947 in OA progression and its associated mechanism remain largely unknown.
Methods
The expression of RNA and protein was determined by reverse transcription-quantitative polymerase chain reaction and Western blot assay. Cell viability was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation was analyzed by 5-Ethynyl-2′-deoxyuridine (EdU) assay and flow cytometry. Cell apoptosis was assessed by flow cytometry. Enzyme linked immunosorbent assay was conducted to analyze the release of pro-inflammatory cytokines. Dual-luciferase reporter assay and RNA immunoprecipitation assay were performed to confirm the target interaction between microRNA-671-5p (miR-671-5p) and circ_0043947 or reticulon 3 (RTN3).
Results
Interleukin 1β (IL-1β) stimulation up-regulated the expression of circ_0043947 in chondrocytes. IL-1β treatment restrained the viability and proliferation and induced the apoptosis, extracellular matrix degradation and inflammatory response of chondrocytes partly by up-regulating circ_0043947. Circ_0043947 interacted with miR-671-5p, and miR-671-5p silencing largely reversed circ_0043947 knockdown-mediated protective effects in IL-1β-induced chondrocytes. miR-671-5p interacted with the 3′ untranslated region (3′UTR) of RTN3. miR-671-5p overexpression attenuated IL-1β-induced injury in chondrocytes, and these protective effects were largely overturned by the overexpression of RTN3. Circ_0043947 acted as a molecular sponge for miR-671-5p to up-regulate RTN3 level in chondrocytes.
Conclusion
Circ_0043947 silencing alleviated IL-1β-induced injury in chondrocytes by targeting miR-671-5p/RTN3 axis.
Link to article