Assessment of Extractability and Accuracy of Electronic Health Record Data for Joint Implant Registries
Nicholas J. Giori, MD, PhD1,2; John Radin, MPH1; Alison Callahan, PhD3; et alHip
Importance Implant registries provide valuable information on the performance of implants in a real-world setting, yet they have traditionally been expensive to establish and maintain. Electronic health records (EHRs) are widely used and may include the information needed to generate clinically meaningful reports similar to a formal implant registry.
Objectives To quantify the extractability and accuracy of registry-relevant data from the EHR and to assess the ability of these data to track trends in implant use and the durability of implants (hereafter referred to as implant survivorship), using data stored since 2000 in the EHR of the largest integrated health care system in the United States.
Design, Setting, and Participants Retrospective cohort study of a large EHR of veterans who had 45 351 total hip arthroplasty procedures in Veterans Health Administration hospitals from 2000 to 2017. Data analysis was performed from January 1, 2000, to December 31, 2017.
Exposures Total hip arthroplasty.
Main Outcomes and Measures Number of total hip arthroplasty procedures extracted from the EHR, trends in implant use, and relative survivorship of implants.
Results A total of 45 351 total hip arthroplasty procedures were identified from 2000 to 2017 with 192 805 implant parts. Data completeness improved over the time. After 2014, 85% of prosthetic heads, 91% of shells, 81% of stems, and 85% of liners used in the Veterans Health Administration health care system were identified by part number. Revision burden and trends in metal vs ceramic prosthetic femoral head use were found to reflect data from the American Joint Replacement Registry. Recalled implants were obvious negative outliers in implant survivorship using Kaplan-Meier curves.
Conclusions and Relevance Although loss to follow-up remains a challenge that requires additional attention to improve the quantitative nature of calculated implant survivorship, we conclude that data collected during routine clinical care and stored in the EHR of a large health system over 18 years were sufficient to provide clinically meaningful data on trends in implant use and to identify poor implants that were subsequently recalled. This automated approach was low cost and had no reporting burden. This low-cost, low-overhead method to assess implant use and performance within a large health care setting may be useful to internal quality assurance programs and, on a larger scale, to postmarket surveillance of implant performance.
Link to article