Knee Surgery, Sports Traumatology, Arthroscopy December 2017, Volume 25, Issue 12, pp 3834–3843

Three-dimensional patellar tendon fibre kinematics in navigated TKA with and without patellar resurfacing

Belvedere, C., Ensini, A., d’Amato, M. et al.
Knee

Purpose

Physiological elongation and orientation of patellar tendon fibres are among the scopes of total knee arthroplasty, but little is known in the three dimensions. The study aims to assess in vitro these variations at the intact and replaced knee, with and without patellar resurfacing. It was hypothesised that fibre patterns differ before and after prosthesis implantation, and between specific prosthesis designs. It was also expected that patellar resurfacing would affect relevant results.

 

Methods

Measurements from 16 intact cadaver knees free from anatomical defects are here reported using a surgical navigation system. Data were collected at the intact joint and after implantation with cruciate-retaining or posterior-stabilised prosthesis designs, with and without patellar resurfacing. Relevant anatomical landmarks and patellar tendon attachments were digitised. Anatomical reference frames in the femur, tibia and patella were defined to measure component implantation parameters. Representative tendon fibres were defined as the straight line segments joining the two extremities. Changes in length and orientation of these fibres were calculated and reported versus flexion at the intact knee and after prosthesis implantation, both with and without patellar resurfacing.

 

Results

A good intra- and inter-specimen repeatability was found at the intact and replaced knees. In both prosthesis designs, the patterns of fibre lengthening were similar to those in the intact knee, though significant differences were observed before and after patellar resurfacing. Corresponding fibre orientations in the frontal and sagittal planes showed significantly smaller ranges than those in the corresponding intact joints. More natural patterns were observed in the knees implanted with the posterior-stabilised design. Significant correlations were identified between patellar component implantation parameters and both patellar tendon fibre elongation and orientation.

 

Conclusions

Differences, however small, in patellar tendon fibre elongation and orientation were observed after total knee arthroplasty. The posterior-stabilised design provided better results, whereas patellar resurfacing affected significantly normal patellar function. In the clinical practice, the present findings can contribute to the understanding of current prosthesis designs and patellar resurfacing, recommending also enhanced care during this surgery.


Link to article