International Orthopaedics June 2010, Volume 34, Issue 5, pp 655–662

Relationship between cutting errors and learning curve in computer-assisted total knee replacement

Manzotti, A., Cerveri, P., De Momi, E. et al.
Knee

Computer-assisted total knee replacement (TKR) has been shown to improve radiographic alignment. Continuous feedback from the navigation system allows accurate adjustment of the bone cuts, thus reducing errors. The aim of this study was to determine the impact of experience both with computer navigation and knee replacement surgery on the frequency of errors in intraoperative bone cuts and implant alignment. Three homogeneous patient groups undergoing computer assisted TKR were included in the study. Each group was treated by one of three surgeons with varying experience in computer-aided and knee replacement surgery. Surgeon A had extensive experience in knee replacement and computer-assisted surgery. Surgeon B was an experienced knee replacement surgeon. A general orthopaedic surgeon with limited knee replacement surgery experience performed all surgeries in group C. The cutting errors and the number of re-cuts were determined intraoperatively. The complications and mean surgical time were collected for each group. The postoperative frontal femoral component angle, frontal tibial component angle, hip–knee–ankle angle and component slopes were evaluated. The results showed that the number of cutting errors were lowest for TKR performed by the surgeon with experience in navigation. This difference was statistically significant when compared to the general orthopaedic surgeon. A statistically significant superior result was achieved in final mechanical axis alignment for the surgeon experienced in computer-guided surgery compared to the other two groups (179.3° compared to 178.9° and 178.1°). However, the total number of outliers was similar, with no statistically significant differences among the three surgeons. Experience with navigation significantly reduced the surgical time.


Link to article