J Orthop Surg Res 16, 618 (2021).

MiR-4303 relieves chondrocyte inflammation by targeting ASPN in osteoarthritis

Wang, C., Wang, L., Guan, X. et al.

Background

Osteoarthritis (OA) is a severe articular cartilage disease whose pathogenesis involves the inflammation of chondrocytes. MicroRNAs (miRNAs) are considered to be effective inflammation regulators. However, the regulatory mechanism of miRNAs in osteoarthritis needs to be further elucidated. In this paper, we aim to investigate the underlying mechanisms by which miR-4303 regulates osteoarthritis.

Methods

RT-qPCR is performed to detect the mRNA expression levels of miR-4303, ASPN, PDIA3, PIK3CA, and TRAF3. CCK-8 assay and EdU assay are carried to assess chondrocyte viability. The protein expression levels of ASPN, PCNA, Ki-67, CyclinA1, CyclinB1, CyclinD2, p27, Bax, Bcl-2, cleaved caspase-3, and Cleaved caspase-9 were measured by western blot. FACs is performed to detect the cell cycle and apoptosis of chondrocyte. ELISA is conducted to assess the levels of TNF-β, IL-1β and IL-6 in the supernatant of chondrocytes. The potential binding sites of miR-4303 and ASPN are predicted by the miRDB database and confirmed by the dual-luciferase reporter gene assay.

Results

Our findings illustrated that miR-4303 was down-regulated in arthritic tissues and LPS-induced chondrocytes; miR-4303 overexpression rescued the decrease in cell viability, cell cycle arrest and apoptosis induced by LPS. Furthermore, miR-4303 overexpression inhibited the release of inflammatory factors in LPS-induced chondrocytes, miR-4303 relieved chondrocyte inflammation via targeting ASPN.

Conclusion

MiR-4303 serves as a prognostic biomarker and relieves chondrocyte inflammation via targeting ASPN. Our findings provide novel prognostic biomarkers in predicting the progression and prognosis of osteoarthritis.


Link to article