Knee joint laxity is restored in a bi-cruciate retaining TKA-design. Knee Surg Sports Traumatol Arthrosc 28, 2863–2871 (2020).

Knee joint laxity is restored in a bi-cruciate retaining TKA-design

Arnout, N., Victor, J., Vermue, H. et al.
Knee

Purpose

The goal is to evaluate the passive stability of a bicruciate retaining, cruciate retaining and bicruciate substituting TKA design in relation to the native knee stability in terms of the laxity envelope. A bicruciate retaining knee prosthesis was hypothesized to offer a closer to normal knee stability in vitro.

Methods

Fourteen cadaveric knee specimens have been tested under passive conditions with and without external loads, involving a varus/valgus and an external/internal rotational torque, distraction/compression force and an anteroposterior shear force. Subsequently, the native knee, bicruciate retaining, cruciate retaining and finally a bicruciate substituting total knee arthroplasty were tested.

Results

Through the range of motion, the width of the varus/valgus and internal/external laxity envelope for the native knee and the bicruciate retaining knee were almost equivalent, whereas the cruciate retaining and the bicruciate substituting knee displayed less laxity and more joint distraction. In all prosthetic knees, an equal anteroposterior laxity was seen for the lateral and medial side whereas in the native knee, a difference in laxity was seen between the stable medial side and the more mobile lateral side.

Conclusion

Bicruciate retaining knee prostheses can restore normal laxity and thus have the potential to offer more normal knee function. Restoration of natural peri-articular soft-tissue tension is clinically important because of its obvious effects on joint stability and range of motion. Furthermore, the results of this study could help to establish the ideal ligament tension and laxity in more conventional implants by approaching the normal values for passive knee evaluation as presented here.


Link to article