Orthopade. 2018; 47(10): 871–879.

Individualized alignment in total knee arthroplasty using image-based robotic assistance

Tilman Calliess,corresponding author Max Ettinger, Peter Savov, Roman Karkosch, and Henning Windhagen
Knee

Introduction

Over the past decades many innovations were introduced in total knee arthroplasty (TKA) focusing on implant longevity and higher procedural precision; however, there are still a high number of dissatisfied patients. It was reported that better anatomical alignment may result in improved patient outcome; however, current technologies have limitations to achieve this. The aim of this video article is to describe the technique of individualized alignment in TKA with the use of image-based robotic assistance.

Methods

The technology is based on an individual patient knee model computed from segmented computed tomography (CT) scans. A preoperative planning of prosthesis position is conducted following the principle of kinematic alignment. Intraoperatively the soft tissue envelope is recorded and the computer predicts the gap balance based on the virtual planning. The prosthesis position is then adapted to achieve balanced gaps and to avoid soft tissue release. This technique is shown in a cadaver operation and clinical examples of two patients are described.

Results

With the combination of anatomically oriented prosthesis positioning and minor adaptations with respect to the soft tissue, an individualized alignment is achieved with reduced need of soft tissue release. The robotic-assisted surgery guarantees a precise implementation of the planning. The initial experience showed a promising outcome in short-term follow-up.

Video online

The online version of this article (10.1007/s00132-018-3637-1) contains a video on patient individualized alignment in total knee arthroplasty. The article and video are available in the electronic full text archive at SpringerMedizin.de under http://www.springermedizin.de/der-orthopaede. The video can be found at the end of the article as supplementary material.


Link to article