Background
Taper corrosion in total hip arthroplasty for bearings with metal heads against polyethylene has developed from an anecdotal observation to a clinical problem. Increased taper wear and even gross taper failure have been reported for one particular design. It is hypothesized that corrosion of the female head taper results in taper widening, allowing the cobalt-chromium head to turn on the stem and wear down the softer titanium alloy by abrasive wear, ultimately causing failure. The purpose of this study is to investigate the time course of this process and the general role of taper dimensions and material in this problem.