The Journal of Arthroplasty, ISSN: 0883-5403, Vol: 37, Issue: 1, Page: 75-82

Does a Monoblock Acetabular Component With a Ceramic Liner Cause More Pelvic Bone Loss Than a Conventional Modular Cementless Acetabular Component? A 2-Year Randomized Clinical Trial

Fischman, Daniel; Mahatma, Mohit M; Slullitel, Pablo; Farzi, Mohsen; Grammatopoulos, George; Poitras, Stéphane; Wilkinson, J Mark; Beaulé, Paul E
Hip

Background

Ceramic-on-ceramic bearings permit the use of large femoral head size while maintaining a favorable effect on wear rates. However, because of increased device rigidity, periprosthetic bone quality could be negatively affected due to stress shielding. The purpose of this study is to assess pelvic periprosthetic bone remodeling around a monoblock ceramic-on-ceramic acetabular component compared to that around a conventional modular metal-on-polyethylene device.

Methods

Participants were randomized to receive hip replacement using either a porous-coated, modular metal-on-polyethylene acetabular component (n = 46) or a hydroxyapatite and titanium-coated monoblock shell with an integrated ceramic-on-ceramic bearing (n = 40). Radiographic assessments were completed preoperatively and postoperatively, and measurements of bone mineral density (BMD) using dual-energy X-ray absorptiometry with region free analysis were performed postoperatively and over 2-years of follow-up.

Results

There was no significant difference in BMD between the 2 groups at baseline or over the following 2 years. At follow-up, complete shell-to-bone contact without a radiolucent line was observed in 26 (67%) of the modular devices and in 37 (93%) of monoblock (P < .001). The modular device was an independent predictor of radiolucent lines (odds ratio 19.1, P = .007). No cases underwent revision surgery for acetabular loosening.

Conclusion

Both the porous-coated modular and hydroxyapatite-coated monoblock acetabular components showed successful clinical results at short-term follow-up with no difference in pixel-level BMD. Using a large head monoblock device does not appear to be associated with an adverse effect on the local bone environment when compared to a modular device.

Link to article