Anteroposterior and rotational stability in fixed and mobile bearing unicondylar knee arthroplasty: a cadaveric study using the robotic force sensor system. Knee Surg Sports Traumatol Arthrosc 21, 2427–2432 (2013) doi:10.1007/s00167-012-2157-5

Anteroposterior and rotational stability in fixed and mobile bearing unicondylar knee arthroplasty: a cadaveric study using the robotic force sensor system

Becker, R., Mauer, C., Stärke, C. et al.
Knee

Purpose

Different bearing designs in unicondylar knee arthroplasty (UKA) have been developed in order to influence the rate of polyethylene wear. Increased anteroposterior translation and rotation after UKA has been hypothesized due to changes in joint surface geometry. The mobile bearing design was expected to show increased anteroposterior translation compared to the fixed bearing and biconcave bearing design.

 

Methods

Six human cadaver knees were used for the tests. Anteroposterior and rotational knee stability was analysed in 0°, 30°, 60°, 90° and 120° of knee flexion using a robotic testing system (KR 125, KUKA Robots Augsburg, Germany). Three forces and moments were measured in a Cartesian coordinate system with a resolution of 1.0 N and 0.1 Nm.

 

Results

There was no difference between the native knees and the knees after UKA in AP translation and rotation in all knee flexion angles. The factor knee flexion angle had a significant impact on the anterior translation when the type of bearing was neglected (p ≤ 0.015).

Conclusion

This study shows that the natural knee stability in AP translation and rotation can be preserved in UKA. The preserved knee stability in different planes after UKA underlines the advantage of UKA when surgery is required in osteoarthritic changes of the medial compartment.


Link to article